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ABSTRACT

In this paper we describe a preliminary version of a
frontal impact crash sensing algorithm capable of
continuously predicting the severity of a crash in real
time. This kind of algorithms could be used to control
an airbag system with a variable output inflator,
which supplies a variable amount of gas into the
airbag on demand.

The algorithm consists of two parts linked in series.
The first part categorizes the class of an event. The
second part predicts the severity of the crash using a
function of the occupant free flight displacement and
time.

Linear regression and neural network analyses were
performed separately to determine the coefficients for
the severity function of each crash mode. The
algorithm was implemented in Simulink and
validated with test data. While both analyses
achieved reasonably good correlation between the
severity of each event and its corresponding severity
function, the neural network analysis generally
provided a better correlation.

INTRODUCTION

The newly revised United States Federal Motor
Vehicle Safety Standard 208 for frontal impact
protection requires new vehicle programs to meet
performance requirements for both 50th %ile male
and 5th %ile female occupants under multiple test
conditions. Most automotive manufacturers are
relying on a new generation airbag system, which is
equipped with a dual-stage inflator, to meet the
revised standard. The additional inflation stage
allows engineers to design an airbag system such that
a lower inflator output will be generated under a less
severe crash event, and vice versa.

An algorithm that is capable of continuously
predicting the crash severity of a collision event, and
a variable inflator that can deliver the amount of gas
as required based on the severity of a crash event
could potentially offer additional benefit in some
crash conditions.

In this paper we present a preliminary version of
such an algorithm. The algorithm is also FEA-
compatible [1], since in making the airbag

deployment decision it uses only cumulative
measures like velocity and displacement, which are
identified measures that can be reliably predicted by
FEA.

CRASH MODE AND DEPLOYMENT
DECISION

The example vehicle described in this paper is
equipped with two accelerometers: one mounted in
front of the vehicle in the crush zone (called the
Electronic Front Sensor, or simply the EFS) and
another in the vehicle compartment (called the
Sensing and Diagnostic Module sensor, or simply the
SDM sensor). First, the algorithm determines the
deployment decision and crash mode. The algorithm
is enabled whenever a potential crash situation is
determined. When the acceleration of the SDM
sensor reaches a predetermined threshold value, a
possible crash event is assessed and the algorithm is
enabled. At this time, the crash event clock is
initialized and the acceleration from both sensors is
integrated to find the velocity. The velocity of the
SDM is reported as calculated, while that for the
front sensor is reported as the maximum attained.
These velocity measures are then integrated to
determine displacement measures.

Figure 1 shows the Simulink [2] model of the
algorithm for determining the deployment time and
the crash mode. The model consists of a series of
modules and blocks.

Test data acceleration signals from the SDM and
EFS sensors were provided with 16-bit resolution at
0.1 ms sampling interval, and duration of 300 ms
from the onset of the crash. These acceleration
signals were preprocessed in the SDM and EFS
accelerometer models. The preprocessing consisted
of filtering the signals at 120 Hz for SDM and 400
Hz for EFS, re-sampling with a 1 ms period, clipping
at 50 g for SDM and 250 g for EFS, and A/D
conversion with an 8 bit resolution. The signals thus
obtained and denoted by As for the SDM and Af for
the EFS were input to the Processing module of the
algorithm.

The enabling of the algorithm and calculation of the
measures is done in the Processing module. Vs is the
SDM velocity, calculated by integrating As; Ss is
SDM displacement, calculated by integrating Vs; Sf
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is the EFS max displacement, calculated by
integrating the max velocity which in turn is
calculated by integrating Af and taking the maximum;
Saf is an EFS measure calculated by subtracting Sf
from the double integration of absolute Af ; and t is
the event clock calculated from the enable time.

The Preprocessing module also contains a reset
logic that is used for resetting the algorithm in case
the algorithm is enabled but the SDM velocity does
not increase above a predetermined threshold. The
reset threshold is determined mainly based on the
rough road data.

Figure 2 shows the velocities at the SDM location
for 11 crash events (all plots are represented vs. the
crash event clock). Of these, three events, 16 km/h
AZT, 30 km/h left 40% offset deformable barrier
(ODB) and 20 km/h 0° barrier impacts are no-
deployment events.

Information from SDM and EFS locations is
combined to discriminate between non-deployment
and deployment events in a timely manner.

The events are classified into three modes (namely
Frontal mode, Angle/ODB mode and Pole mode)
based on their similar crash signatures. The decision
whether or not to deploy the airbag is made by three
parallel modules that compare SDM and EFS
displacement measures with a set of thresholds. The
thresholds of each module are calibrated based on the
data from events that belong to the same crash mode.

The module labeled ‘Front’ corresponds to the
Frontal mode and will be triggered by the signals like
the 0° frontal barrier impact events. The module
labeled ‘Angle/ODB’ corresponds to the Angle/ODB
mode and will be triggered by signals like the angle
and ODB impact events. The module labeled ‘Pole’
corresponds to the Pole mode and will be triggered
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Figure 1. Simulink model of the algorithm.
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by the signals like the pole impact events. All three
crash mode modules are working in parallel until a
deployment decision is made. The module that
triggers the deployment also initiates the severity
prediction calculation according to the crash mode
represented by that module.

CRASH SEVERITY

We chose to define the crash severity based on the
impact velocity of the occupant with the steering

wheel. The driver is assumed to be in free flight and
at a distance of 350 mm from the steering wheel.
Figure 3 depicts the impact velocities for all events
ranked in ascending order. The first three events are
no deployment events. Based on this ranking we
simplified the severity for each event as shown in
Figure 4. Note that the severity is generally in
agreement with a broader classification used for dual
stage airbags.
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Figure 3. Free flight driver impact velocity at 350 mm displacement.
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Regression Approach

It is obvious that the deployment of the airbag has to
take place a long time before the driver hits the
steering wheel. That means we have to predict the
driver impact velocity in real time. In the following
we assume that the prediction of the severity of an
event can be reasonably accurate for a period of 20
ms past deployment time. The information provided
by the EFS accelerometer, past the deployment time,
becomes unreliable and therefore, we did not use it in
determining the severity. That left us to use only
information from the SDM location.

The severity measure that we arrived at has the
characteristics of an average acceleration and is
defined by equation 1.

t
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t
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ks)t(severity

2
⋅−⋅= (1.)

The coefficients ks and kv depend on the crash
mode. Vsd is the SDM velocity at deployment time
and is used here to compensate the larger values of
the measures for events that fire later. Its influence in
the formula is decreasing with time. As mentioned
previously we had to determine two coefficients for
each crash mode, six in total. The values have to
provide not only the ranking within each category but
also over all events. For each mode we started by
calculating the values of the displacements up to 20
ms past trigger time and of the velocities at trigger
time. Then we used a linear regression technique to

determine the initial values for the coefficients. In
general, the values thus obtained were not the best
considering the possible variation of the crash
signals. By trial and error we modified the initial
values. Table 1 shows the values of the final
coefficients.

The implementation of the severity calculation in
Simulink is shown in Figure 5.
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Table 1.

Coefficients ks and kv
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Frontal 135 1
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Figure 4. Normalized crash severity of various events.
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In Figure 6 the output of the Simulink model is
shown for all eight deployment events. The time is
indicated in ms after event detection. For some events
the severity at deploy time may be very small but
within the time window of 20 ms they reach their
rank. For example the 64 km/h left ODB starts with a
small value, 0.16 and reaches 0.83 by the end of the
20 ms time window.

Neural Network Approach

The previous approach showed that defining the
severity as a function of displacement and velocity
could approximately match the severity ranking.
Considering the variation effects resulted in relatively
large variations of the severity. That is why we
looked for an improved, more complex mapping
function based on similar measures. We employed a
neural network to determine the mapping function.
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Figure 7. Neural network architecture.

The architecture of the neural network is presented
in Figure 7. It is a typical multi-layer network with
three inputs corresponding to the measures, one
hidden layer and one output neuron [3]. Inputs to the
neural network include t, the elapsed time from
collision detection; Ss, the SDM displacement at time
t; either Vsd, the SDM velocity at the time airbag
deployment was triggered, or Sfd, the EFS
displacement at the time airbag deployment was
triggered. The severity is given by the neural network
output. The neural network can be trained using data
from collision tests or from simulation of various
events in the three collision modes. The desired
neural network outputs can be defined as linear
functions starting from zero and ending at the value
corresponding to the normalized ranking. The neural
network utilized is a typical multi-layer network with
three inputs corresponding to the measures, one
hidden layer and one output neuron. The output, y, of
the network can be represented by the equation 2.
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where xk are the inputs, 1
kiw represents the weight

from input k to neuron i, 1
ib is the bias of neuron i,

2
iw represents the weight from the hidden layer

neuron i to the output neuron, and 2b is the bias of the
output neuron.
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Figure 6. Severity output for all modes – nominal values.
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The resulting weights and biases that are developed
during the neural network training are calculated
once and then recorded in the system that controls the
airbag deployment. Table 2 shows the inputs
corresponding to each crash mode that were used in
the present study.

Table 2.

Neural Network Inputs

x1 x2 x3

Frontal Ss Vsd t

Angle/ODB Ss Sfd t

Pole Ss Vsd t

To better understand the procedure we illustrate it
for the frontal mode. Inputs, xk, to the neural network
for the frontal mode include Ss, Vsd and t; and three
neurons are utilized in the hidden layer. We let x1 =
Ss, the SDM displacement values for a 20 ms period
after the trigger time, x2 = Vsd, SDM velocity at
trigger time and a constant for the network, and x3 =
t, the event time. The test data available for this mode
contained data from three crash tests, 28 km/h, 44

km/h and 56 km/h 0° frontal barrier. Using these test
data and including possible variations we trained the
neural network. As desired outputs we defined linear
functions starting from zero and ending at the value
corresponding to the ranking shown in Figure 4. The
desired outputs used for training are shown in Figure
8.
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Figure 8. Desired severity output for frontal
events used for training.

We chose 3 neurons in the hidden layer and we
trained the network until the training error became
smaller than 10-3. Table 3 shows the resulting neural
network’s weights and biases after training. The
network was implemented in a Simulink module
named Front-S, as shown in Figure 9. The Saturation
block limits the output to values between 0 and 1.
Presumably, a higher speed collision would have a
higher severity value than a lower speed collision. If
the airbag is at maximum inflation level for the lower
speed collision, it cannot be inflated more. Rather

than limiting in the model the severity to one for all
collisions above a certain speed we are only limiting
the value used to control the inflator. The Time-
window block enables the calculations for the 20 ms
period after the deployment decision.
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Figure 9. Simulink implementation of the frontal mode severity prediction module.



Sala 7

Table 3.

Frontal mode network weights and biases

Hidden Layer

-0.6459 0.2973 3.1349

-0.1548 -0.3174 7.02451
kiw

-0.0016 -0.0624 -1.6418

1
ib -0.6469 1.0961 -2.6380

Output Layer

2
iw 2b

-5.1214 1.0593 0.0168 -4.1304

In a similar manner we developed the modules for
angle/ODB mode and pole mode. It is worth noting
that for angle/ODB mode the second input to the
neural network is x2 = Sfd, the EFS displacement
value at trigger time and five neurons were used in
the hidden layer.

Figure 10 plots the severity outputs of the
algorithm’s Simulink model (see Figure 1) for
various crash events when the corresponding
acceleration signals were input to the model. Only the

deploy events are depicted versus event clock
indicated in ms.

Using the neural network approach we could match
very closely the desired severity ranking. In case one
wants to use only a dual stage inflator one could use
the same algorithm by choosing an appropriate
threshold, for example 0.7 between the two stages.

CONCLUSION

We have developed a preliminary version of a frontal
impact crash sensing algorithm to continuously
predict the severity of a crash in real time.

The algorithm first determines the airbag
deployment time using a crash mode discrimination
method. The severity of each event is then predicted
by a function of the driver free flight displacement
and time. Linear regression and neural network
analyses were performed separately to determine the
coefficients for the severity function of each crash
mode. While both analyses achieved reasonably good
correlation between the severity of each event and its
corresponding severity function, the neural network
analysis generally provided a better correlation. Since
the number and type of events available were
somewhat limited in this analysis, a larger number of
events, as well as a wider range of event types would
be necessary for a more rigorous validation of the
analyses presented in this paper.
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Figure 10. Severity output for all events – nominal values.
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